Five Problem-a-day Study Guide

Friday

1. Determine the truth value of the following statement: "Either 2 is rational and π is irrational, or 2π is irrational"
2. Prove that if x is odd and y is even, then $x+y$ is odd.
3. Prove the following statement using logic.

$$
((P \Rightarrow Q) \wedge(R \Rightarrow S) \wedge(P \vee R)) \Rightarrow(Q \vee S)
$$

4. Prove the following statement form is a tautology using a truth table.

$$
((P \Rightarrow Q) \wedge(R \Rightarrow S) \wedge(P \vee R)) \Rightarrow(Q \vee S)
$$

5. Let $x \in \mathbb{R}$ be greater than 6 . Prove that:

$$
\frac{x}{x+1}>\frac{x}{x+2}
$$

Saturday

1. Write down an English sentence for the mathematical statement

$$
\forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}}(x y+y=7)
$$

2. Prove the following statement (Eratta: This statement is false)

$$
\forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}}(x y+y=7)
$$

3. Prove that $\exists_{\varepsilon>0}\left(\varepsilon^{2}<\varepsilon\right)$
4. Prove that $\forall_{n>7}\left(n^{3}>n^{2}\right)$
5. Find the negation of $\forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}}(x y+y=7)$.

Sunday

1. Prove that $\sqrt{17}$ is irrational.
2. Prove that the function below is one-to-one.

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto 7 x+2
\end{aligned}
$$

3. Prove that the function below is onto.

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R}_{\geq 0} \\
x & \mapsto x^{2}
\end{aligned}
$$

4. Let a and b be positive integers. Using the definition of $\operatorname{gcd}(a, b)$, show that

$$
\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, m)=a b
$$

5. Explain and show why $6 \mid 18$.

Monday (A, B, C, D are sets)

1. If $C \subseteq D$ and $D \subseteq B$, prove that $C \cap D \subseteq A \cap B$.
2. Prove that $\mathcal{P}(A)-\mathcal{P}(B) \subseteq \mathcal{P}(A-B)$
3. Prove that $A-(B-C)=(A-B)-C$
4. Prove that $(A \times B) \cap(B \times A) \subseteq(A \cap B) \times(A \cap B)$
5. How many elements will $\mathcal{P}(\mathcal{P}(\mathcal{P}(\{a\}))$ have? Find it.

Tuesday

1. Find both of the following

$$
\bigcup_{m=1}^{\infty}\left(3-\frac{1}{m}, m\right) \text { and } \bigcap_{m=1}^{\infty}\left(3-\frac{1}{m}, m\right)
$$

2. Prove:

$$
\bigcap_{i \in I} A_{i}=\bigcup_{i \in I} A_{i}
$$

3. Let I be an arbitrary index set and A_{i} sets indexed by I. Prove or disprove:

$$
\left(\bigcup_{i \in I} A_{i}\right)-B=\bigcup_{i \in I}\left(A_{i}-B\right)
$$

4. Suppose that $J \subseteq I$ are index sets. Fill in each of the boxes below with either " $=$ ", " \subseteq ", or "?". Then prove them.

$$
\bigcap_{i \in J} A_{i} \square \bigcap_{i \in I} A_{i} \text { and } \bigcup_{i \in J} A_{i} \square \bigcup_{i \in I} A_{i}
$$

5. Prove for all integers $n \geq 2$, that:

$$
\left(\bigcup_{m=1}^{n} A_{m}\right)^{c}=\bigcap_{m=1}^{n} A_{m}^{c}
$$

Wednesday

1. Let X be a set with n elements. Prove that $|\mathcal{P}(X)|=2^{n}$.
2. Figure out what the ??s should be, then Prove that $\sum_{m=1}^{n}(2 m-1)=(? ?)^{2}$ for all $n \geq 2$.
3. Use induction to prove that:

$$
\sum_{m=1}^{n} \frac{1}{(2 m-1)(2 m+1)}=\frac{n}{2 n+1}
$$

4. Let $r \neq 1$. Prove that:

$$
\sum_{m=1}^{n} r^{m}=\frac{r^{n+1}-1}{r-1}
$$

5. Let $r \neq 1$. Prove that:

$$
\sum_{m=1}^{n} m r^{m}<\frac{r}{(1-r)^{2}}
$$

Thursday

1. Prove that $\sum_{m=1}^{n} m^{2}=\frac{n(n+1)(2 n+1)}{6}$ for all $n \geq 0$.
2. Prove that $\sum_{m=1}^{n}(-1)^{m-1} m^{2}=\frac{(-1)^{n-1} n(n+1)}{2}$ for all $n \geq 1$
3. Define a relation R on \mathbb{Z}^{2} via $(a, b) R(x, y)$ if and only if $a \equiv_{4} x$ and $b \equiv_{5} y$. Prove or disprove that R is an equivalence relation.
4. Define a relation "Mod 3 or Mod 7" via $a R b$ if and only if $a \equiv_{3} b$ or $a \equiv_{7} b$. Prove or disprove that R is an equivalence relation.
5. Give an example of a relation that is reflexive, antisymmetric, but not transitive.

Friday

1. Find $5^{-1} \bmod 26$.
2. Prove that subtraction is well defined in mods. First, define exactly what " $\bar{x}-\bar{y}$ " means, where the relation is mod m. This definition depends on the representatives x and y you chose - show that the solution is the same, regardless.
3. Solve $17 x^{2}+4 \equiv 32 \bmod 50$
4. Figure out what numbers have multiplicative inverses in mod 12. Conjecture a theorem that might work for other mods.
5. We'll construct the following set: \mathbb{R} / \mathbb{Z} in this problem.
a. The relation \equiv will be defined via $x R y$ if and only if $x-y \in \mathbb{Z}$. Prove that R is an equivalence relation. Then we may start using the notation " \equiv " for R.
b. Find the equivalence class $\overline{3}$.
c. Find the equivalence class $\overline{3.2}$.
d. Write down the set of all equivalence classes.
e. Construct a bijection between the set of all equivalence classes, and $[0,1)$.

Saturday

1. Show that the function f, below, is one-to-one.

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R}^{2} \\
x & \mapsto\left(x^{2}, x^{3}\right)
\end{aligned}
$$

2. Show that the function, f, below, is onto.

$$
\begin{aligned}
f: \mathbb{R}^{3} & \rightarrow \mathbb{R}^{2} \\
(x, y, z) & \mapsto\left(x^{3} z, y^{2} z\right)
\end{aligned}
$$

3. Show that the function $\left.f\right|_{\mathbb{R} \times\{0\}}$ is one-to-one, where f is:

$$
\begin{gathered}
f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
(x, y) \mapsto x^{2} y+2 x+3 y+4
\end{gathered}
$$

4. Let $f: A \rightarrow B$ be a function and $S \subseteq B$. The pre-image of S is defined as $f^{-1}(S):=\{a \in A \mid f(a) \in S)$. Given f below, find $f^{-1}([4,7])$.

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto x^{2}
\end{aligned}
$$

5. Find f^{-1}, where f is given below. Hint: You might have to write out a table of values for f^{-1}.

$$
\begin{aligned}
f: \mathbb{Z}_{11} & \rightarrow \mathbb{Z}_{11} \\
x & \mapsto x^{3}
\end{aligned}
$$

Sunday

1. The function f, below, is not invertible. Define the largest possible restriction, $g:=\left.f\right|_{S}$ such that g is invertible. Then find the rule that defines g.
2. Prove that the function f, below, is never invertible - no matter what positive integer m is.

$$
\begin{aligned}
f: \mathbb{Z}_{m} & \rightarrow \mathbb{Z}_{m} \\
x & \mapsto x^{2}
\end{aligned}
$$

3. For every positive integer n, find a sequence of distinct functions $f_{1}, f_{2}, f_{3}, \ldots, f_{n}$ such that:

$$
f_{1} \circ f_{2} \circ f_{3} \circ \cdots \circ f_{n}=f
$$

where f is given below.

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto 2 x+3
\end{aligned}
$$

4. Find f^{-1} for f given below, then prove that f^{-1} is the inverse.

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto 2 x+3
\end{aligned}
$$

5. Prove that the following statement is true: "I will get a good night sleep tonight"
