Transition to Advanced Mathematics

Five Problem-a-day Study Guide

Friday

- 1. Determine the truth value of the following statement: "Either 2 is rational and π is irrational, or 2π is irrational"
- 2. Prove that if x is odd and y is even, then x + y is odd.
- 3. Prove the following statement using logic.

$$((P \Rightarrow Q) \land (R \Rightarrow S) \land (P \lor R)) \Rightarrow (Q \lor S)$$

4. Prove the following statement form is a tautology using a truth table.

$$((P \Rightarrow Q) \land (R \Rightarrow S) \land (P \lor R)) \Rightarrow (Q \lor S)$$

5. Let $x \in \mathbb{R}$ be greater than 6. Prove that:

$$\frac{x}{x+1} > \frac{x}{x+2}$$

Saturday

1. Write down an English sentence for the mathematical statement

$$\forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}} (xy + y = 7)$$

2. Prove the following statement (Eratta: This statement is false)

$$\forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}} (xy + y = 7)$$

- 3. Prove that $\exists_{\varepsilon>0}(\varepsilon^2 < \varepsilon)$
- 4. Prove that $\forall_{n>7} (n^3 > n^2)$
- 5. Find the negation of $\forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}} (xy + y = 7)$.

Sunday

- 1. Prove that $\sqrt{17}$ is irrational.
- 2. Prove that the function below is one-to-one.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto 7x + 2$$

3. Prove that the function below is onto.

$$f: \mathbb{R} \to \mathbb{R}_{\geq 0}$$
$$x \mapsto x^2$$

4. Let a and b be positive integers. Using the definition of gcd(a, b), show that

$$gcd(a, b) \cdot lcm(a, m) = ab$$

5. Explain and show why 6|18.

Monday (A, B, C, D are sets)

- 1. If $C \subseteq D$ and $D \subseteq B$, prove that $C \cap D \subseteq A \cap B$.
- 2. Prove that $\mathcal{P}(A) \mathcal{P}(B) \subseteq \mathcal{P}(A B)$
- 3. Prove that A (B C) = (A B) C
- 4. Prove that $(A \times B) \cap (B \times A) \subseteq (A \cap B) \times (A \cap B)$
- 5. How many elements will $\mathcal{P}(\mathcal{P}(\{a\}))$ have? Find it.

Tuesday

1. Find both of the following

$$\bigcup_{m=1}^{\infty} \left(3 - \frac{1}{m}, m\right) \text{ and } \bigcap_{m=1}^{\infty} \left(3 - \frac{1}{m}, m\right)$$

2. Prove:

$$\bigcap_{i\in I} A_i = \bigcup_{i\in I} A_i$$

3. Let I be an arbitrary index set and A_i sets indexed by I. Prove or disprove:

$$\left(\bigcup_{i\in I}A_i\right) - B = \bigcup_{i\in I}(A_i - B)$$

4. Suppose that $J \subseteq I$ are index sets. Fill in each of the boxes below with either "=", " \subseteq ", or " \supseteq ". Then prove them.

$$\bigcap_{i \in J} A_i \square \bigcap_{i \in I} A_i \quad \text{and} \quad \bigcup_{i \in J} A_i \square \bigcup_{i \in I} A_i$$

5. Prove for all integers $n \ge 2$, that:

$$\left(\bigcup_{m=1}^{n} A_{m}\right)^{c} = \bigcap_{m=1}^{n} A_{m}^{c}$$

Wednesday

- 1. Let *X* be a set with *n* elements. Prove that $|\mathcal{P}(X)| = 2^n$.
- 2. Figure out what the ??s should be, then Prove that $\sum_{m=1}^{n} (2m 1) = (??)^2$ for all $n \ge 2$.
- 3. Use induction to prove that:

$$\sum_{m=1}^{n} \frac{1}{(2m-1)(2m+1)} = \frac{n}{2n+1}$$

4. Let $r \neq 1$. Prove that:

$$\sum_{m=1}^{n} r^m = \frac{r^{n+1} - 1}{r - 1}$$

5. Let $r \neq 1$. Prove that:

$$\sum_{m=1}^n mr^m < \frac{r}{(1-r)^2}$$

Thursday

- 1. Prove that $\sum_{m=1}^{n} m^2 = \frac{n(n+1)(2n+1)}{6}$ for all $n \ge 0$.
- 2. Prove that $\sum_{m=1}^{n} (-1)^{m-1} m^2 = \frac{(-1)^{n-1} n(n+1)}{2}$ for all $n \ge 1$
- 3. Define a relation R on \mathbb{Z}^2 via (a, b)R(x, y) if and only if $a \equiv_4 x$ and $b \equiv_5 y$. Prove or disprove that R is an equivalence relation.
- 4. Define a relation "Mod 3 or Mod 7" via aRb if and only if $a \equiv_3 b$ or $a \equiv_7 b$. Prove or disprove that R is an equivalence relation.
- 5. Give an example of a relation that is reflexive, antisymmetric, but not transitive.

Friday

- 1. Find $5^{-1} \mod 26$.
- 2. Prove that subtraction is well defined in mods. First, define exactly what " $\bar{x} \bar{y}$ " means, where the relation is mod m. This definition depends on the representatives x and y you chose show that the solution is the same, regardless.
- 3. Solve $17x^2 + 4 \equiv 32 \mod 50$
- 4. Figure out what numbers have multiplicative inverses in mod 12. Conjecture a theorem that might work for other mods.
- 5. We'll construct the following set: \mathbb{R}/\mathbb{Z} in this problem.
 - a. The relation \equiv will be defined via xRy if and only if $x y \in \mathbb{Z}$. Prove that R is an equivalence relation. Then we may start using the notation " \equiv " for R.
 - b. Find the equivalence class $\overline{3}$.
 - c. Find the equivalence class $\overline{3.2}$.
 - d. Write down the set of all equivalence classes.
 - e. Construct a bijection between the set of all equivalence classes, and [0,1).

Saturday

1. Show that the function *f* , below, is one-to-one.

$$f: \mathbb{R} \to \mathbb{R}^2$$
$$x \mapsto (x^2, x^3)$$

2. Show that the function, f, below, is onto.

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
$$(x, y, z) \mapsto (x^3 z, y^2 z)$$

3. Show that the function $f|_{\mathbb{R}\times\{0\}}$ is one-to-one, where f is:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

(x, y) $\mapsto x^2y + 2x + 3y + 4$

4. Let $f: A \to B$ be a function and $S \subseteq B$. The pre-image of S is defined as $f^{-1}(S) \coloneqq \{a \in A | f(a) \in S\}$. Given f below, find $f^{-1}([4,7])$.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^2$$

5. Find f^{-1} , where f is given below. Hint: You might have to write out a table of values for f^{-1} .

$$f: \mathbb{Z}_{11} \to \mathbb{Z}_{11}$$
$$x \mapsto x^3$$

Sunday

- 1. The function f, below, is not invertible. Define the largest possible restriction, $g \coloneqq f|_S$ such that g is invertible. Then find the rule that defines g.
- 2. Prove that the function f, below, is never invertible no matter what positive integer mis.

$$f: \mathbb{Z}_m \to \mathbb{Z}_m$$
$$x \mapsto x^2$$

3. For every positive integer n, find a sequence of distinct functions $f_1, f_2, f_3, \dots, f_n$ such that:

$$f_1 \circ f_2 \circ f_3 \circ \cdots \circ f_n = f$$

where f is given below.

$$: \mathbb{K} \to \mathbb{K}$$

 $x \mapsto 2x + 3$

 $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto 2x + 3$ 4. Find f^{-1} for f given below, then prove that f^{-1} is the inverse.

$$f:\mathbb{R}\to\mathbb{R}$$

$$x \mapsto 2x + 3$$

5. Prove that the following statement is true: "I will get a good night sleep tonight"